Gas fermentation of *Cupriavidus necator* variants at elevated pressure

JASBIR SINGH and GERARD GARDNER (HEL LTD), TUCK SENG WONG and KANG LAN TEE (University of Sheffield), STEPHANE E GUILLOUET (LISBP, INSA, France)

better chemistry - faster

C1net Conference 21 -23 January, 2019

Gas Fermentation Rate – commercial viability

<u>C1-based</u> fuels and more valuable organics need to be produced at rates which are fast enough to justify the investment in plant and people: presently big challenge for large scale production

Reasons

- Low density of gases (~ 1/1000th of liquids)
- Low gas solubility (CH4, H_2 and $O_2 \sim 1$ mmole/kg water, $CO_2 \sim 30$ mmole/kg water)

C1 gas transfer rate is slow and limits conversion rate.

Solution

Speed up gas transfer

Gas Concentration in Broth

Mass balance around bioreactor describes changes in dissolved oxygen concentration C (in milligrams per liter) in the nutrient broth gives:

Gas Transfer into Liquid

<u>Agitation and Sparging – first step</u>

The Mechanical design of agitator blades, speed of agitation and break up into small bubbles provides an important step in getting the gas to the bacteria/cells: expressed in terms of kLa

<u>Solubility</u> – second step

Molecular forces between the gas and liquid, expressed in terms of solubility, then determines how much gas is actually retained in the liquid.

Hence: Gas uptake rate = $La (C^* - C)$

How to increase solubility C* ?

Alternate oxygen and nitrogen purging at different pressure. Oxygen saturation level increases with pressure.

Maximum Gas transfer rate into Liquid

Agitation speed, impeller and sparging fixed

Gas transfer rate increases linearly with pressure

Typical Systems used for C1 Fermentation

Carbon utilization of *Cupriavidus necator*

Microorganism widely recognized for conversion of C1 sources into a range of different organics, according to the choice of bacterial strain and features of bioengineering.

Three examples:

- C. Necator Re2133 (studies of strain growth with CO2/H2/O2 feed)
- C. Necator pEG7d (studies of autotropic isopropanol production)
- C. Necator H16 (studies of strain growth with both gluconate and CO2 as carbon sources)

Autotrophic growth of STRAIN in bioreactor

Autotrophic growth of Cupriavidus necator Re2133 at atmospheric pressure

Grown in stirred reactor by supply of CO2/H2/O2

Fermentation stopped when the maximum O2 transfer capacity is reached (DO near zero)

maximum O2 transfer rate determines maximum growth rate

Autotrophic production of strain – at pressure

Autotrophic growth of Cupriavidus necator Re2133 at high pressures

Efforts to increase growth rate by elevated pressure of gases

Pressure ramps to continue growth – up to 4 bar

Growth rate does not increase but growth is sustained for longer OD now ~ 1.2 instead of ~ 0.2 at atmospheric pressure

Autotrophic production of isopropanol

Autotrophic production of isopropanol

Isopropanol Production - benefits of elevated pressure

> Maximum rate of IPA production in CO₂ matched rate with fructose

Production phase on	[isop] _{max} (g L ⁻¹)	qIsop _{max} (Cmol Cmol ⁻¹ h ⁻¹)	Specific production (g isop/g _{CDW})
CO₂ from Gas Mix	0.25	0,035	0.25
CO ₂ from Ind. Gas	2.2 (3)	0.07	1.0
Fructose	9.0 (16)	0,062	2

Fermentation of *Cupriavidus necator* H16

Objective

C. necator H16 during fermentation:

(a) under heterotrophic cultivation conditions(b) under autotrophic cultivation conditions

Typical gas feed composition:

 $85 \% H_{2,} 5 \% O_{2'} 10 \% CO_2$

Heterotrophic growth of *C. necator* H16 at 1 bar in 1% sodium gluconate

Reference Run at 1bar

Heterotrophic growth of *C. necator* H16 at 1 bar in 1% sodium gluconate. The maximum OD₆₀₀ (=15) and calculated μ_{max} (=0.326 h⁻¹) are similar to values achieved in tube cultures.

Heterotrophic and Autotrophic cultivation of C. necator H16

Growth curve of C. necator H16 in gas fermentation

Fermentation at 1-4 bar pressure

Cupriavidus Necator pEG7d at elevated pressure

Cell's viability determination by Flow Cytometry

Increase in Pressure has no negative impact on cell's viability (within the range 0 to 5.3 bars overpressure)

CONCLUSIONS

<u>1.</u> Limits of gas solubility and density can be overcome by operation of reactor at elevated pressure.

<u>2</u>. Bioreactor systems operating up to 10bar have been developed and successfully operated.

<u>3.</u> Specific Bacterial Strains need to developed to survive high pressure conditions.

<u>4</u> Cupriavidus Necator pEG7d viable at least to 5bar (GUILLOUET, LISBP, INSA, France). Already able to produce alcohols from C1 gas to over 2g/L

<u>4</u> Cupriavidus Necator H16 at present ~ 3bar, under development (Wong and Tee at Sheffield Univ., UK).

