A multiscale mathematical model of

bacterial nutrient uptake
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Multiscale modelling
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Key questions
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Key questions

* What form should the effective uptake take?

* Scaling with surface area or volume?

* Can we determine how the transition between surface area and
volumetric scaling occurs?



Model formulation
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Model formulation

In culture medium
 Nutrient diffusion

In bacteria
 Nutrient diffusion

* Nutrient absorption
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Model formulation

In culture medium

* Nutrient diffusion O O
O

In bacteria O
 Nutrient diffusion

* Nutrient absorption O O

At bacterial membrane
* Nutrient flux is conserved
* Nutrient is maintained in local equilibrium




Mathematical homogenization
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Mathematical homogenization
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Mathematical homogenization

Goal: derive an equation for the local average from the full system



Mathematical homogenization
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We want a governing equation for the locally-averaged concentration



Mathematical homogenization
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Effective diffusion Effective uptake

D is an effective diffusion coefficient to be determined via homogenization



Three important cases

Bact. diffusivity Uptake strength Bact. density

Case 1 Normal Normal Normal
Case 2 Very small Normal Normal
Case 3 Normal Very large Very sparse

Upscaling diffusion through first-order volumetric sinks: a homogenization of bacterial nutrient uptake
MP Dalwadi, Y Wang, JR King, NP Minton, SIAM J Appl Math, 78, pp. 1300-1329



Case 1

* This is the important problem for the effective diffusion

Bact. diffusivity Uptake strength  Bact. density

Case 1 Normal Normal Normal

Case 2 Very small Normal Normal
Case 3 Normal Very large Very sparse




Case 1

* This is the important problem for the effective diffusion

* The effective uptake scales with bacterial volume

Bact. diffusivity Uptake strength  Bact. density

Case 1 Normal Normal Normal

Case 2 Very small Normal Normal
Case 3 Normal Very large Very sparse




Case 2

* A ‘double-porosity’ model
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Case 2

* A ‘double-porosity’ model

* The effective uptake now has a memory property

* The history of the problem is important until a steady state is reached.

Bact. diffusivity Uptake strength  Bact. density

Case 1 Normal Normal Normal

Case 2 Very small Normal Normal

Case 3 Normal Very large Very sparse




Case 2 (steady state)

flél = 4rDR (\/ﬁR coth /iR — 1) &

D is bacterial diffusivity
R 1s bacterial radius

i is actual (pointwise) strength of uptake



Case 2 (steady state)
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Case 2 (steady state)

flé) = 47 DR (ViR coth /iR — 1) @

flc] scales with bacterial surface area for strong uptake

flc] scales with bacterial volume for weak uptake



Case 3
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Case 3

4nDR (\/_Rcoth\/_R—l)
1—|—D(\/_Rcoth\/_R—1)

flel =

Bact. diffusivity Uptake strength  Bact. density

Case 1 Normal Normal Normal
Case 2 Very small Normal Normal

Case 3 Normal Very large Very sparse




Case 3

ArDR (ViR coth ViR 1)

flel = 1—|—D(\/_Rcoth\/_R—1)

flc] scales with bacterial volume for weak uptake



Case 3

ArDR (ViR coth ViR 1)

flel = 1—|—D(\/_Rcoth\/_R—1)

f|c] scales with bacterial volume for weak uptake

flc] scales with bacterial surface area for low diffusivity



Case 3

47DR (\/_Rcoth\/_R—l)
1+D(\/_Rcoth\/_R—1)

flel =

flc] scales with bacterial volume for weak uptake
flc] scales with bacterial surface area for low diffusivity

flc] scales with bacterial radius for strong uptake



Extension to nonlinear uptake

(when the dissolved gas concentration is small)

 Sub-linear uptake can be detected

log (uptake)

log (concentration)



Extension to nonlinear uptake

(when the dissolved gas concentration is small)

 Sub-linear uptake can be detected

* Measurements cannot discern between super-linear and linear uptake
A

log (uptake) R

log (concentration)



Conclusions

* We systematically derived the effective uptake for nutrient diffusing
through a colony of bacteria.

* We found how the effective uptake smoothly transitions between
scaling with the bacterial radius, surface area, and volume.

* Our model allows us to determine when we will be able to deduce
bacterial properties from experimental observation.
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