A multiscale mathematical model of bacterial nutrient uptake

Mohit Dalwadi

Hooke Research Fellow

SBRC, University of Nottingham

Mathematical Institute, University of Oxford

C1NET conference
22 January 2019

Bacterial factories

Effective nutrient uptake

Multiscale modelling

Key questions

• What form should the effective uptake take?

Key questions

- What form should the effective uptake take?
 - Scaling with surface area or volume?

Key questions

- What form should the effective uptake take?
 - Scaling with surface area or volume?
 - Can we determine how the transition between surface area and volumetric scaling occurs?

Model formulation

In culture medium

Nutrient diffusion

Model formulation

In culture medium

Nutrient diffusion

In bacteria

- Nutrient diffusion
- Nutrient absorption

Model formulation

In culture medium

Nutrient diffusion

In bacteria

- Nutrient diffusion
- Nutrient absorption

At bacterial membrane

- Nutrient flux is conserved
- Nutrient is maintained in local equilibrium

Goal: derive an equation for the local average from the full system

We want a governing equation for the locally-averaged concentration

$$\frac{\partial \widehat{c}}{\partial t} = \nabla \cdot (\overline{D} \nabla \widehat{c}) - f[\widehat{c}]$$
Effective diffusion

Effective uptake

Our main interest

 \overline{D} is an effective diffusion coefficient to be determined via homogenization

Three important cases

	Bact. diffusivity	Uptake strength	Bact. density
Case 1	Normal	Normal	Normal
Case 2	Very small	Normal	Normal
Case 3	Normal	Very large	Very sparse

Upscaling diffusion through first-order volumetric sinks: a homogenization of bacterial nutrient uptake MP Dalwadi, Y Wang, JR King, NP Minton, SIAM J Appl Math, 78, pp. 1300–1329

• This is the important problem for the effective diffusion

	Bact. diffusivity	Uptake strength	Bact. density
Case 1	Normal	Normal	Normal
Case 2	Very small	Normal	Normal
Case 3	Normal	Very large	Very sparse

- This is the important problem for the effective diffusion
- The effective uptake scales with bacterial volume

	Bact. diffusivity	Uptake strength	Bact. density
Case 1	Normal	Normal	Normal
Case 2	Very small	Normal	Normal
Case 3	Normal	Very large	Very sparse

• A 'double-porosity' model

	Bact. diffusivity	Uptake strength	Bact. density
Case 1	Normal	Normal	Normal
Case 2	Very small	Normal	Normal
Case 3	Normal	Very large	Very sparse

- A 'double-porosity' model
- The effective uptake now has a memory property
 - The history of the problem is important until a steady state is reached.

	Bact. diffusivity	Uptake strength	Bact. density
Case 1	Normal	Normal	Normal
Case 2	Very small	Normal	Normal
Case 3	Normal	Very large	Very sparse

Case 2 (steady state)

$$f[\hat{c}] = 4\pi \hat{D}R \left(\sqrt{\hat{\mu}}R \coth \sqrt{\hat{\mu}}R - 1 \right) \hat{c}$$

 \hat{D} is bacterial diffusivity

R is bacterial radius

 $\hat{\mu}$ is actual (pointwise) strength of uptake

Case 2 (steady state)

$$f[\hat{c}] = 4\pi \hat{D}R \left(\sqrt{\hat{\mu}}R \coth\sqrt{\hat{\mu}}R - 1\right)\hat{c}$$

 $f[\hat{c}]$ scales with bacterial surface area for strong uptake

Case 2 (steady state)

$$f[\hat{c}] = 4\pi \hat{D}R \left(\sqrt{\hat{\mu}}R \coth\sqrt{\hat{\mu}}R - 1\right)\hat{c}$$

 $f[\hat{c}]$ scales with bacterial surface area for strong uptake

 $f[\widehat{c}]$ scales with bacterial volume for weak uptake

	Bact. diffusivity	Uptake strength	Bact. density
Case 1	Normal	Normal	Normal
Case 2	Very small	Normal	Normal
Case 3	Normal	Very large	Very sparse

$$f[\hat{c}] = \frac{4\pi D\bar{R} \left(\sqrt{\bar{\mu}}\bar{R} \coth\sqrt{\bar{\mu}}\bar{R} - 1\right)}{1 + D\left(\sqrt{\bar{\mu}}\bar{R} \coth\sqrt{\bar{\mu}}\bar{R} - 1\right)}\hat{c}$$

	Bact. diffusivity	Uptake strength	Bact. density
Case 1	Normal	Normal	Normal
Case 2	Very small	Normal	Normal
Case 3	Normal	Very large	Very sparse

$$f[\widehat{c}] = \frac{4\pi D\bar{R} \left(\sqrt{\bar{\mu}}\bar{R} \coth\sqrt{\bar{\mu}}\bar{R} - 1\right)}{1 + D\left(\sqrt{\bar{\mu}}\bar{R} \coth\sqrt{\bar{\mu}}\bar{R} - 1\right)}\widehat{c}$$

 $f[\hat{c}]$ scales with bacterial volume for weak uptake

$$f[\hat{c}] = \frac{4\pi D\bar{R} \left(\sqrt{\bar{\mu}}\bar{R} \coth\sqrt{\bar{\mu}}\bar{R} - 1\right)}{1 + D\left(\sqrt{\bar{\mu}}\bar{R} \coth\sqrt{\bar{\mu}}\bar{R} - 1\right)}\hat{c}$$

 $f[\hat{c}]$ scales with bacterial volume for weak uptake

 $f[\hat{c}]$ scales with bacterial surface area for low diffusivity

$$f[\hat{c}] = \frac{4\pi D\bar{R} \left(\sqrt{\bar{\mu}}\bar{R} \coth\sqrt{\bar{\mu}}\bar{R} - 1\right)}{1 + D\left(\sqrt{\bar{\mu}}\bar{R} \coth\sqrt{\bar{\mu}}\bar{R} - 1\right)}\hat{c}$$

 $f[\hat{c}]$ scales with bacterial volume for weak uptake

 $f[\hat{c}]$ scales with bacterial surface area for low diffusivity

 $f[\hat{c}]$ scales with bacterial radius for strong uptake

Extension to nonlinear uptake

(when the dissolved gas concentration is small)

Sub-linear uptake can be detected

Extension to nonlinear uptake

(when the dissolved gas concentration is small)

- Sub-linear uptake can be detected
- Measurements cannot discern between super-linear and linear uptake

Conclusions

- We systematically derived the effective uptake for nutrient diffusing through a colony of bacteria.
- We found how the effective uptake smoothly transitions between scaling with the bacterial radius, surface area, and volume.
- Our model allows us to determine *when* we will be able to deduce bacterial properties from experimental observation.

Acknowledgements

John King, Nigel Minton, Yanming Wang

