Producing Non-Native Ethanol as a Major Product from Syngas Fermentation of an Engineered *Eubacterium limosum* KCTC13263BP

In Seop Chang

Energy and Biotechnology Laboratory (EBL)

School of Earth Sciences and Environmental Engineering

Gwangju Institute of Science and Technology (GIST

Syngas fermentation and acetogens

- \geq Syngas fermentation is a microbioal process that converts syngas (CO_2 , H_2 , CO) to biofuel or biochemical using acetogens as a biocatalyst.
- Acetogens are group of bacteria which are capable of chemolithoautotrophic growth using CO_2 .
- Acetogens use Wood-Ljungdahl pathway to synthesis acetyl-CoA from $CO_2 + H_2$ \geq or CO for an energy conservation and a carbon fixation.

Wood-Ljungdahl pathway (WLP)

Syngas bioconversion and industrial strain development

Eubacterium limosum KCTC13263BP (formely, E. limosum KIST612)

- Isolated in anaerobic digestor (early 1990)
- Obligate anaerobic acetogen
- > Autotrophic/heterotrophic growth is possible
- ➢ Secured genetic data base → complete genome sequence, gene annotation

Organism	Products
Acetobacterium woodii	Acetate
Clostridium aceticum	Acetate
Clostridium carboxidivorans	Acetate, ethanol, butyrate, butanol
Clostridium ljungdahlii	Acetate, ethanol
Eubacterium limosum	Acetate, butyrate
Morella thermoacetica	Acetate

- Fast growth rate (µ = 0.17-0.25 h⁻¹) under 1 atm of CO partial pressure
- High organic acid (acetate, butyrate) production rate from CO with high threshold on CO substrate inhibition
- Production diversity as compared with other (homo) acetogens
- Bioenergetics on syngas metabolism

JOURNAL OF BIOSCIENCE AND BIOENGINEERING Vol. 88, No. 6, 682-685. 1999

Formulation of Defined Media for Carbon Monoxide Fermentation by *Eubacterium limosum* KIST612 and the Growth Characteristics of the Bacterium

IN-SEOP CHANG,^{1,2} BYUNG-HONG KIM,^{1*} DO-HEE KIM,¹ ROBERT W. LOVITT,² and HA-CHIN SUNG³

JOURNAL OF BACTERIOLOGY, Jan. 2011, p. 307–308 0021-9193/11/\$12.00 doi:10.1128/JB.01217-10

> Complete Genome Sequence of a Carbon Monoxide-Utilizing Acetogen, Eubacterium limosum KIST612[∀]

Hanseong Roh,¹ Hyeok-Jin Ko,¹ Daehee Kim,² Dong Geon Choi,² Shinyoung Park,² Sujin Kim,¹ In Seop Chang,² and In-Geol Choi^{1*}

Energy Conservation Model Based on Genomic and Experimental Analyses of a Carbon Monoxide-Utilizing, Butyrate-Forming Acetogen, *Eubacterium limosum* KIST612

Jiyeong Jeong,^a Johannes Bertsch,^b Verena Hess,^b Sunju Choi,^a In-Geol Choi,^c In Seop Chang,^a Volker Müller^b

A promising biocatalyst for application in the syngas industry

Bioenergetics of acetogens

The mechanism of SLP coupled with chemiosmotic energy conservation is highly strain-specific

< Major point of view>

- The enzymes related to the redox reaction of H+/H₂, Fd/Fd²⁻, and NAD(P)+/NAD(P)H
- Transmembrane ion pump;
 Rnf(ferredoxin: NAD⁺ oxidoreductase) Or Ech(energy-conserving hydrogenase)
- Ion (Na⁺ or H⁺) translocating ATP synthase

Bioenergetic Benefit: Factor affecting cell growth and metabolites formation

6

Metabolites Available from CO & Bioenergetics Differences

1 Acetate :	0.375 ATP/CO
② Ethanol :	0.25 ATP/CO
③ Ethanol(via AOR):	0.333 ATP/CO
④ Butyrate :	0.35 ATP/CO
(5) Butyrate(via CoAT):	0.286 ATP/CO
6 Butanol :	0.292 ATP/CO
⑦ Butanol(via AOR):	0.333 ATP/CO
⑧ Butanol(via CoAT, AOR) :	0.281 ATP/CO

1>4>3=7>6>5>8>2

- Acetate production has the highest ATP yield (energetically most preferred).
- Especially, the pathway via AOR has high ATP yield to produce alcohol by assimilation of acid product.

· 광주과학기술원

Hollow fiber membrane bioreactor

Membrane characteris	stics			Configuration	$A_{\rm s}/V_{\rm L}~({\rm m}^{-1})$	Pressure through	Mixing reservoir (rpm	i) $k_L a (h^{-1})$	Reference
Membrane Material	Water interaction	Pore size (µm)	ID/OD (µm)			lumen (kPa)/Water recirculation rate (mL min ⁻¹)		·	
PVDF	Hydro phobic (on CO)	0.1	700/1200	Stand alone ¹ (inside out)	62.5	37.23/not used	Not used	155,2	Yasin et al. (2014)
PP	Hydro phobic (on CO)	0.04	220/300	External ² (inside out)	175	103.4/1000	200	1096.2	Shen et al. (2014b)
PVDF	Hydro phobic (on CO)	0.2	800/1400	Internal ³ (inside out)	2250	203/1500	Not used	1.36^	Zhao et al. (2013)
PS	Hydrophilic (on O ₂)	n/a	500/660	External (inside out)	4366	1-2 SLPM*/80	Not used	55	Orgill et al. (2013)
PES	Hydrophilic (on O ₂)	n/a	1100/1300	External (inside out)	2271	1-2SLPM*/80	Not used	23	Orgill et al. (2013)
PDMS	Hydrophobic (on O ₂)	Non-porous	200/300	External (inside out)	10,000	1-2SLPM*/400	Not used	1062.0	Orgill et al. (2013)
PP	Hydro Phobic (on CO)	0.2	376/426	External (inside out)	56	114,5/670	90	385.01	Lee et al. (2012b)
CHF	Hydro Phobic (on CO)	n/a	200/240	External (outside in)	200	206.8/1500	Not used	946.0	Munasinghe and Khanal (2012)
CHF	Hydro Phobic (on CO)	n/a	n/a	Internal (inside out)	200	241/500	Not used	1.08	Munasinghe and Khanal (2010b

Hollow fiber membrane module (Master thesis book, Yeseul Jeong, 2014)

Reactor operation: Continuous CO fermentation by AdhE2 transformants of KCTC13263BP

Amount

50ml/L

10ml/L

2g/L

0.5g/L

0.1ml/L

Culture condition for E. limosum KCTC13263BP

CBBM

Basal medium

Trace solution

Yeast extract

L-cysteine

Rezazurin

	Bicarbonate	2.1g/L
RPM	рН	7.0
\rightarrow	Vitamin	1 %
Permeate tank	P-source (Sodium phosphate buffer)	1 %
	Na ₂ S	Added during the operation for Batch mode

Specification

Reactor volume : 0.5 L Working volume : 0.4 L Gas supply : polymeric Spurger Gas: 8:2 mixture at 1atm (Injected with gasbag) Temperature : 37°C

Acetate (mM)	Ethanol (mM)
37.9	80.9

BCR operation results

Hd

Biomass [g/L]	Max. μ (/hr)	Batch mode (hr)
3.4	0.041	96
Acetic acid [mM]	Ethanol [mM]	Continuous mode (hr)

[1] Batch mode operation, inoculation stage

- Initial operation : Batch mode (5days)
- pH decrease to 6.5 and monitoring products

[2] Convert to the continuous mode

- Convert to continuous mode, maintain pH 6.5
- Dilution rate (D) : 0.007 h⁻¹
- Mass transfer (kLa) : 15 rpm to 60 rpm
- Concentration of ethanol increased with maintain biomass

[3] Biomass increasing stage

- Increase Dilution rate (D) : 0.02 to 0.03 h⁻¹
- Increase Mass transfer (kLa) : increased to 105 rpm
- Cell concentration increased : 1.0 g/L to 2.9 g/L
- Product concentration decreased by increasing dilution rate

[4] Ethanol production stage

- · Cell concentration maintained
- · Acetate concentration decrease, ethanol concentration increased
- During continuous mode, the production rate of acetate is faster than the reassimilation rate of acetate to ethanol due to the continuous growth of cells.
- In the stagnation period of cell growth, acetate assimilatory ethanol production was observed.

Take-Home Message

[Specific Features in Elm]

- Acetate is #1 metabolite but others could be naturally/artificially available from CO oxidation (TRUE)
- Butyrate is naturally producible (TRUE)
- Na+ dependent Rnf system: Fd2- for Na+ translocation and ATP synthesis (Like A. woodii) (Confirmed)
- Existed Fd dependent Acetate OxidoReductase (AOR) (function?)

•

[In this study]

- One of Two routes for ethanol production from acetyl-CoA: Acetate-assimilatory ethanol production.
- Aldehyde Fd oxidoreductase (AOR) is a key enzyme for Acetate-assimilatory ethanol production
- AdhE not Adh for Acetate-assimilatory ethanol production in Elm transformant.
- AdhE transformant showed no butyrate formation (could be competitive product to consume reducing power)
- Acetate-assimilatory ethanol production only showed in CO (autotrophic) fed condition (could be energetics issue?)
- Adh transformant not showed production of ethanol (could be due to type of reducing power, NADPH?)
- High production of ethanol (as major product on CO condition): Homoethanogenesis
- Acetate and ethanol titers: depending on the difference of acetate production rate and reassimilation rate of acetate to ethanol

Meet Scientists and Engineers for detail info

[On 21 Jan]

- **Board No. 16** "Heterologous Expression of Alcohol Dehydrogenase Enables Concentrated Production of Non-Native Ethanol from Carbon Monoxide in Acetogen, *Eubacterium limosum* KCTC13263BP"
- Board No. 17 "Development of Optimised CRISPR/Cas9 System for Acetogenic Bacterium, *Eubacterium limosum* KIST612"
- **Board No. 19** "Simultaneous Gas- and Cell-Recycled Continuous Carbon Monoxide Fermentation Under Open-, Closed- and Mixed Circuit to Boost-up Biomass and Product Titer Using Acetogen Strain, *Eubacterium limosum* KIST612"

[On 23 Jan]

9:40-10:00 "Microbioprocessing: Optimum Reactor Design for Carbon Monoxide Fermentation"

By Dr Muhammad YASIN

External collaborators

Prof. In Geol Choi at Korea Univ. (Genomics & Transcriptomics)

Prof. Lee Krumholz at Oklahoma Univ, USA (Acetogens Physiology)

Prof. Dr. Volker Müller at Goethe-University Frankfurt (Electron bifurcation)

Acknowledgement

Supported by C1 Gas Refinery Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (NRF-2015M3D3A1A01064883), Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning grants from the Ministry of Trade, Industry and Energy (No. 20173010092460) and Brain Korea 21 Programme.

CO team members in EBL, GIST

Dr. Muhammad Yasin Nulee Jang (Currently, COMSATS Univ.) (PhD student)

Mungyu Lee (PhD student)

Dr. Minseol Cha Dr. Jeong Jiyoung Hyunsoo Kang (PhD student)

Jiyeon Kim (PhD student)

Soyoung Oh (MS student)

Contact Info IN SEOP CHANG

Director, International Environmental Research Institute (IERI, http://ieri.gist.ac.kr) Professor, Energy and Biotechnology Laboratory (<u>https://env1.gist.ac.kr/~ebl)</u> School of Earth Sciences and Environmental Engineering (<u>http://env1.gist.ac.kr</u>) Gwangju Institute of Science and Technology (GIST) (<u>http://www.gist.ac.kr</u>) Email: ischang@gist.ac.kr

